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Introduction

A central problem in algebraic geometry is that of classification and, closely re-
lated to that, understanding how objects vary in families. For example, one natu-
ral question to ask is wheter there exists the "space of all smooth curves" and, if it
exists, what are its properties. This is a problem dating as far back as Riemann’s
works on Riemann surfaces, when he proved that a Riemann surface of genus g
with g ≥ 2 depends on 3g− 3 parameters, or, in other terms, the "space of genus g
curves" is 3g− 3-dimensional, if g ≥ 2. One can, of course, ask the same question
for more complicated objects, such as sheaves, closed subschemes, morphisms...
One notable example of such a classifying space is the Hilbert scheme, a scheme
parametrizing the closed subschemes of a projective scheme Y, whose local study
will be the guideline of this work through the means of deformation theory.
The object of study of deformation theory is the study of the local properties of
families of objects. This is related to the previous problem, in the sense that, when
a classifying space as above exists, called a moduli space, then deformation theory
can be used to provide information about said space.
In this work all schemes will be k-schemes, for a fixed algebraically closed field
k. A deformation of a scheme X will be the datum of a flat and proper morphism
of schemes X → S with a fixed rational point s ∈ S such that the fiber over s is
isomorphic to the scheme X we started with. Since we want to apply the methods
of deformation theory to the study of Hilbert schemes, we will instead consider
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deformations as above that, roughly, preserve the structure of X as a closed sub-
scheme.
The study of deformations of an object is done in various subsequent steps: one
first studies the so called infinitesimal deformations, which are deformations over
Artinian rings. These are deformations of our object X obtained by adjoining some
nilpotent parameters which result in X when the parameters vanish. So, for exam-
ple, if X is the vanishing locus of some set of polynomials { fi}i, an example of de-
formation of X could be obtained by considering the vanishing locus of { fi + εgi}i,
with ε2 = 0. The use of nilpotents shows that, for the study of deformation theory,
we need the language of schemes: classical algebraic geometry cannot handle well
nilpotents.
In the study of infinitesimal deformations, one first studies the first order deforma-
tions, which are, roughly speaking, the deformations obtained by adjoining a sin-
gle parameter of square 0. In complex algebraic geometry, this would be akin to
considering the first-order Taylor expansion of the equations defining our object.
To study higher-order deformations, one important topic is that of obstructions.
Given a surjection of Artinian rings A′ → A with kernel isomorphic to k, one can
ask if a given deformation defined over A can be lifted to a deformation defined
over A′. This problem is related to the vanishing of a certain element, the obstruc-
tion to the lifting, of a vector space over k.
The study of higher order deformations then leads to formal deformations, which
are collections of compatible infinitesimal deformations over all quotients R/mn

R,
where R is a complete Noetherian ring such that R/m is k. Finally, we consider the
problem of algebraizability, that is, if a given formal deformation is induced by a
deformation of X over an scheme of finite type.
In this work, we will only consider in detail the case of first order deformations,
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we will define formal deformations and introduce the important concepts of var-
ious kind of universality properties, and will not touch upon the problem of alge-
braizability.
There are various ways to study of the deformation theory of inifnitesimal defor-
mations. One, the one used in this work, is due to Schlessinger, who reformulated
deformation theory in the language of functors from categories of local Artinian
rings to the category of sets. Given such a functor F, we will require that F(k) be
a singleton, and we will consider elements of F(A), for an Artinian ring A with
residue field k, as the deformations of ∗ ∈ F(k). All the notions relevant in defor-
mation theory will be given for such functors, and we will then specialize them
to the deformation problem of closed subschemes. The pinnacle of Schlessinger’s
approach is the Schlessinger theorem, which will be the arriving point of the last
chapter

The outline of this thesis is as follows. In chapter 1 we introduce all the the no-
tions that will be later used: functors of Artinian rings, deformations and, quickly,
moduli spaces. We define and state the existence of the Hilbert scheme, the mod-
uli space we will study with the help of deformation techniques.
In chapter 2 we will show that, for suitable functors of Artin rings F, there is a no-
tion of space tangent to F. We will then compute the tangent space to the functor
of deformations of closed subschemes, and then show how this tangent space is
indeed of geometric nature, showing its relationship with the Hilber scheme.
The theme of chapter 3 is that of liftings. Given a surjection of Artinain rings
A′ → A, and a deformation over A, one can ask if this deformations lifts to one
over A′. We will show that this question is related to vanishing of an element of
a vector space, the obstruction to the lifting. We will then show how the problem
of lifting deformation is connected with geometry, and as a consequence we will
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deduce the smoothness of various Hilbert schemes.
In chapter 4, we introduce the notion of formal elements and of formal deforma-
tions. We define what universal and miniversal deformations are, and state the
Schlessinger theorem, a fundamental result that determines whether (mini)versal
deformations exist for a given deformation problem.

All chapters are organized as follows: in the first section we develop the ab-
stract deformation theory using functors of Artin rings. In the second section we
specialize the notion introduced in the first to the problem of deformations of
closed subschemes. In the last section of a chapter (except for the last chapter) we
apply the work done previously to do some geometry.

Notations and conventions

Throughout the text, k will denote a fixed algebraically closed field. All schemes
will be k-schemes, and all the morphisms will be assumed to be morphisms of
k-schemes. We will use Λ to denote a complete Noetherian local ring with residue
field k.
By an algebraic scheme we will mean a k-scheme (X,OX) of finite type. If there
will be no confusion about the scheme structure on (X,OX), we will simply de-
note it by X, forgetting the structure sheaf.
If S is a k-scheme and s ∈ S a closed point, we will denote the morphisms from
Spec(k) to S having image s by s : Spec(k)→ S.
Given a morphism f : X → Y of of finite type and a point y ∈ Y, we will
use the notation X(y) to denote the fiber scheme of f along y, that is X(y) =

X×Y Spec(k(y)).
Given a coherent sheaf F on a projective scheme X, hi(X,F ) will denote the k-
dimension of Hi(X,F ).



CONTENTS 9

Given a category C, the notation X ∈ C will mean that X is an object of C.
The terms map and morphism will be synonymous.
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Chapter 1

The main tools

In this chapter we introduce the main tools we will be using. We define the func-
tors of Artin rings, and we show that the categories of local Artinian rings we
will work with have fibered products. We then give a definition for the deforma-
tions of a scheme, both for "abstract" schemes and for embedded schemes. The
latter type will be the deformations we will use to study the local geometry of the
Hilbert scheme, a scheme that we define by its functor of points and of which we
state the existence in the third part of the chapter.

1.1 Functors of Artin Rings

Definition 1.1.1. The categoryAΛ is the category having local Artinian Λ-algebras with
residue field k as objects and morphisms are local Λ-algebras morphisms.

If Λ = k, we will simply denote Ak by A. The most important object of A will
be the ring of dual numbers k[x]/(x2). We will denote it by k[ε].

Definition 1.1.2. A functor of Artin rings is a functor F : AΛ → Set. A morphism of
functors of Artin rings is just a natural transformation between the functors.
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Example 1.1.1. The simplest and most important examples of functors of Artin
rings are the following. Let R a complete Λ-algebra with residue field k: then
HomΛ(R,−) : AΛ → Set is a functor. Functors isomorphic to one of this kind
are called prorepresentable, and are said to be prorepresented by R.

We will use the following important property:

Proposition 1.1.3. The category AΛ has fibered products.

Proof. Suppose we are given three rings A, A′, A′′ ∈ AΛ, and morphisms φ :
A′ → A, ψ : A′′ → A. The set A′ ×A A′′ = {(a′, a′′)|φ(a′) = ψ(a′′)} inherits a
ring structure from the the ones on A′ and A′′, by pointwise product. Morevoer, it
is the fibered product of A′ and A′′ over A in the category of rings. It clearly also
remains a Λ-algebra. It only remains to show it is local Artinian and with residue
field k. Since it is a submodule of A′ × A′′, which has finite length as Λ-module,
A′ ×A A′′ has finite length, too. So, we conclude that it is Artinian. Consider the
ideal m, consisting of the elements (a′, a′′) ∈ A′ ×A A′′ such that a′ ∈ mA′ and
a′′ ∈ mA′′ . It is proper, and we now show it is the unique maximal ideal. Indeed,
suppose (a′, a′′) is not an element of m. Then, without loss of generality, a′ is a unit
in A′. Since ψ(a′′) = φ(a′) and the morphisms are local, a′′ must be a unit in A′′,
too. Indeed, ψ(a′′) is a unit, and by locality of ψ non-units in A′′ are sent to non-
units in A. So there are inverses b′, b′′ respectively for a′ and a′′. It is immediate to
see that (b′, b′′) ∈ A′ ×A A′′ and that is an inverse for (a′, a′′) in said ring.
Finally, all the rings considered are also k-algebras, that is, there is an embedding
k→ A such that projection onto the residue field is the identity of k, and similarly
for A′, A′′. So, given x ∈ k, the element (x, x) ∈ A′ ×A A′′ is mapped to x via the
composition A′ ×A A′′ → A′ → k. Hence k is a quotient of A′ ×A A′′.

Remark 1.1.1. The existence of fibered products has the following consequence.
Given A, A′, A′′ as above and a functor of Artinian rings F, we have the following
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commutative diagram, induced by functoriality of F.

F(A′ ×A A′′) F(A′)

F(A′′) F(A)

Hence, we get a unique map α : F(A′ ×A A′′)→ F(A′)×F(A) F(A′′).

In the following chapters we will use the map α to determine properties of the
functor F, and to do so the following definition will be crucial.

Definition 1.1.4. A small Λ-extension is a surjective morphism φ : A→ A′ inAΛ such
that the kernel of φ has length 1. An extension is said to be trivial if it admits a splitting,
i.e. a morphism ψ : A→ A′ such that φ · ψ = idA.

Remark 1.1.2. Since all ideals of an Artinian ring are nilpotent, every surjection of
Artin rings can be factored as a composition of small extensions.

Remark 1.1.3. The request that the kernel I be of length 1 is equivalent to ask that it
be isomorphic to k, since the quotient field of Λ is k. Moreover, I is nilpotent, since
A′ is Artinian, and I2 is a submodule of I. It can’t be equal to I by nilpotence, so
by simpleness of I it must be of square zero.

Example 1.1.2. A trivial extension can be constructed in the following way. Con-
sider the A-module A⊕ k, and define a product by the rule (a, x) · (b, y) = (ab, ay+
bx). Standard computations show that it endows A⊕ k with a ring structure, and
we denote it by A∗k Moreover, the canonical inclusion A → A⊕ k endows A∗k
with a structure of A-algebra compatible with the module structure. The projec-
tion (a, x) 7→ a is a surjective morphism of Λ-algebras, with kernel isomorphic to
k, hence small, with a clear splitting.
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Given two small extensions φ : A′′ → A and ψ : A′ → A of the same ring A, a
morphism between them is a morphism χ : A′′ → A′ such that the following is a
commutative diagram.

0 k A′ A 0

0 k A′′ A 0

idk

ψ

χ idA

φ

By the 5−lemma, this implies that such a χ would be an isomorphism, hence all
morphisms are isomorphisms.

Definition 1.1.5. Given A ∈ AΛ, we denote by o(A/Λ) the set of isomorphism classes
of small Λ-extensions of A.

Given a morphism f : A → B in AΛ and a small extension B′ of B, there is a
way to obtain an extension of A. Indeed, consider the following diagram:

B′ ×B A A

0 k B′ B 0

ψ

fi

where ψ is the projection from the fibered product. Given a ∈ A, if b′ ∈ B′ is a
preimage of f (a), then ψ maps (b′, a) to a, so that ψ is surjective. Since the kernel of
φ is k, the elements of ker ψ are of the form (i(x), 0) with x ∈ k. Hence, we identify
the kernel of ψ with k, and we see that ψ : B′ ×B A→ A is a small extension of A.
The extension we have just built is called pullback of the extension B′ → B along
f .
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Similarly, given a morphism g : k→ k and a small extension

0 k A′ A 0i ψ

we can define a pushout extension in the following way. Define A tk k to be the
A-algebra A∗k/I, where I = ((i(x),−g(x)). We have the following diagram

0 k A′ A 0

k A tk k A

i ψ

idA

χ

The bottom row defines a small extension of A, which we call the pushforward of
the original extension along g.

Both for the pullback and the pushforward of an extension, it is immediate to
see that the isomorphism class of the construction depends only on the isomor-
phism class of the extension we started with. We show it for the pullback, and the
argument for the pushforward case is similar.

If B′ → B and B′′ → B are equivalent small extensions, then by definition there
is a morhpism ξ : B′ → B′′ making the diagram

0 k B′ B 0

0 k B′′ B 0

i φ

ξ

j ψ

commute.
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We have to check that there is a morphism µ making the following diagram com-
mute

0 k B′ ×B A A 0

0 k B′′ ×B A A 0

µ

We define µ(b′, a) = (φ(b′), a). Then, since µ(i(x)) = j(x), the first square com-
mutes. Since ψ(ξ(b′)) = φ(b′), the second square commutes.

Finally, we can define a sum on o(A/Λ). Given two estensions φ : A′ → A
and ψ : A′′ → A, let φ + ψ be defined as follows. Consider the fibered product
A′×A A′′: the induced morpshim A′×A A′′ → A is not a small extension, since the
kernel has length 2, and is hence isomorphic to k⊕ k. Let I be the kernel of the sum
morphism δ : k⊕ k → k, (a, b) → a + b. Then, (A′ ×A A′′)/I is a small extension
of A. Indeed, the ideal (k ⊕ k)/I ⊂ (A′ ×A A′′)/I has length 1, and when we
quotient by it we end up with A. We define φ + ψ to be this small extension.

Now, using the notion of pushout of small extensions, we can endow o(A/Λ)

with a structure of A-module. Indeed, given a ∈ A, let g : k → k by the multi-
plication by a. Then, given (the class of) an extension η ∈ o(A/Λ), define a · η
to be the (class of the) pushforward of η along g. With arguments similar to the
one done above for the pushout, one can then show that both the sum and the
multiplication are independent of the class of η, so we indeed get a structure of
A-module. In particular, the action of the maximal ideal of A is trivial, because
it acts trivially on k and the taking the pushforward along the trivial map yields
the trivial extension A ∗ k. So, the action descends to an action of k and we get the
following:

Proposition 1.1.6. The set o(A/Λ) has a structure of A-module. In particular, it is also
a k-vector space.
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1.2 Infinitesimal deformations of schemes

We start by fixing an algebraic scheme X over k. This will be the scheme we de-
form.

Definition 1.2.1. Let S a connected k-scheme. A family of deformations of X by S is the
datum of a cartesian diagram

X X

Spec k S

j

π

s

with π a proper flat surjective morphism. S is called the parameter space and X the total
space of the deformation.

In the following, we will often refer to a family of deformations of X over S
simply by calling it a deformation of X over S. If we want to specify the param-
eter space and the closed point s, we will use the notation (S, s, π) to denote the
deformation.

The condition that the diagram is a pullback can be rephrased by asking that
the fiber of π along the closed point s ∈ S be isomorphic to the scheme X. Then
the inclusion j is a closed immersion. We will call such fiber the distinguished fiber.

Definition 1.2.2. Given two families of deformations π : X → S and η : Y → S, a
morphism between the deformations is a map f : X → Y such that the following diagram
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commutes:
X

X Y

S
π

f

η

Given a family of deformations of X π : X → S, the fibers X (t) are also called
deformations of X, for all t ∈ S closed points. The deformations of X will all be
equidimensional by flatness of π, but they need not be all isomorphic. In the same
spirit, there can be deformations of a scheme X such that all fibers are isomorphic
to X, but the family is not trivial.

Example 1.2.1. Consider X = X × S and let π : X → S the projection map. Defor-
mations isomorphic to one of this kind are called trivial.

Example 1.2.2. Consider S = A1, X = Spec k[x, y, t](xy − t) and π : X → S
the morphism associated to the inclusion k[t] ↪→ k[x, y, t]/(xy − t). It is readily
verified that it is surjective, and since the source is Noetherian reduced and the
target is a Dedekind scheme, flatness follows from lemma [Har77, Chapter III,
Prop. 9.7]. Then X0 = X (0) has a singularity at the origin, while all the other
fibers are smooth and isomorphic to each other.

Example 1.2.3. A ruled surface is a nonsingular projective surface X together with
a morphism π to a nonsingular projective curve C whose fibers are copies of P1

and admitting a section σ : C → X. Hence, a ruled surface defines a deformation
of P1 over C. This deformations have all isomorphic fibers but, however, there
exist ruled surfaces that are not trivial, that is such that X is not isomorphic to
C × P1. One such example are the Hirzebruch surfaces P(O ⊕O(n)), which are
not isomorphic to P1 ×P1 if n 6= 0.
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Given a deformation (S, s, π), a morphism g : S′ → S and a closed point s′ ∈ S′

mapping to s, we can consider the diagram

X X ×S S′

Spec k S′

j′

πS′

Proposition 1.2.3. The diagram above defines a family of deformations of X over S′.

Proof. Both flatness and properness are stable under base change, so we need only
prove that the diagram is a cartesian diagram. Notice that, in the diagram

X X ×S S′ X

Spec k S′ S

πS′ π

the outer square is a pullback, and so is the square on the right. Then, the square on
the left is a pullback square because of the pasting property of pullback squares.
See https://ncatlab.org/nlab/show/pasting+law+for+pullbacks.

We denote the deformation obtained this way by g](S, s, π).

Definition 1.2.4. Given a deformation (S, s, π) of X, a morphism g : S′ → S and a
closed point s′ ∈ S′ mapping to s, we say that the deformation g](S, s, π) is the pullback
of (S, s, π) along g.

https://ncatlab.org/nlab/show/pasting+law+for+pullbacks
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Studying general deformations of a scheme X is in general very hard, so we
start by studying the so-called infinitesimal deformations. These are the building
blocks for formal deformations, a concept we will introduce in Section 4.2.1.

Definition 1.2.5. A deformation X → S of X is called infinitesimal if S is the spectrum
of a ring R ∈ A. It is called a first order deformation if S is the spectrum of the ring of
dual numbers over k.

When speaking of an infinitesimal deformation π : X → S, we will denote it
by referring to the morphism π alone, instead of (S, s, π).

Remark 1.2.1. If X is an infinitesimal deformation of X, then the inclusion j : X →
X in the definition of deformation is a homeomorphism. Hence infinitesimal de-
formations change only the scheme structure of X, and not the topology. In the
following, we will identify the topologies on X and on X . If U is an open subset of
X we will use the notation X |U to denote the subscheme of X on the open subset
U.

Definition 1.2.6. A deformation π : X → S is locally trivial if for every x ∈ X there is
an open neighbourhood U of x such that the restriction

U X |U

Spec k S

π

s

is a trivial deformation.

Given two morphisms f : A → A′, g : A′ → A′′ in A, and an infinitesi-
mal deformation η over A, there are natural isomorphisms between g]( f](η)) and
(g f )](η). Indeed, this follows from functoriality of limits.



1.2. Infinitesimal deformations of schemes 21

Hence, there is a well defined functor of Artin rings DefX : A → Set, sending
each object A ∈ A to the set of isomorphism classes of deformations of X over A,
and a morphism f : A → A′ to the pullback morphism g]. Functoriality is guar-
anteed by the remark above.

Remark 1.2.2. Even though the construction of f] involves a pullback (hence, a con-
trovariance), the deformation functor is a usual functor (that is, not controvariant).
This is because, when we take the Spec of a morphism A′ → A, the arrows get re-
versed, and when we take the pullback of a deformation, they get reversed again.
This is why, to denote the induced morphism, we used a lower subscript.

Remark 1.2.3. A variant of the functor DefX that is generally easier to work with
is the functor of locally trivial infinitesimal deformations Def′X. Since locally triv-
ial deformations pull back to locally trivial deformations, there is a well defined
assignment

AΛ 3 A 7→ Def′X(A) = {classes of locally trivial deformations of X over Spec A}

( f : A→ A′) 7→ ( f] : Def′X(A)→ Def′X(A′))

that is moreover functorial.

The functors DefX and Def′X are used to study the so-called abstract deformations
of X, that is those that depend solely on the space X. However, for our infinites-
imal study of the Hilbert scheme, if we deform a closed subscheme X ⊂ Pn we
want to remember the subscheme structure of X. So, we need to slightly modify
the definition of a deformation, and this leads to the following definition.
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Definition 1.2.7. Let Y a scheme, and X ⊂ Y a closed subscheme of Y. Then a family of
deformations of X in Y is the datum of a commutative diagram

X X Y× S

Spec k S

j

π

i

p
s

with p the projection on the second factor, i a closed immersion and where the square is
cartesian. We moreover ask that π be flat surjective, locally of finite presentation and, if S
is not a point, proper.

As for abstract deformations, one also calls the fibers the fibers of π defor-
mations of X. The definition of infinitesimal deformation of X in Y and first order
deformation of X in Y are analogous to the abstract case.

The pullback construction done for abstract deformations can be carried out in
the same way for embedded deformations. Hence we get a functor of Artin rings,
called the local Hilbert functor, HY

X : A → Set. It sends an Artinian ring A ∈ A
to the set of isomorphism classes of embedded deformations of X over A, and a
morphism f : A→ A′ to the pullback morphism f].

Definition 1.2.8. A closed subscheme X ⊂ Y is rigid in Y if every embdedded deforma-
tion of X in Y is trivial.

1.3 Moduli problems and the Hilbert scheme

We start by recalling the functorial point of view in algebraic geometry. To do so,
we first recall a version of the Yoneda lemma.
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Theorem 1.3.1 (Yoneda lemma). Given a locally small category C, the functor

C → SetC
op

X 7→ HomC(−, X)

is fully faithful.

This means that morphisms between two objects X and Y of C correspond bi-
jectively to natural transformations between HomC(−, X) and HomC(−, Y). Con-
sidering the category of k-schemes (although this is true for any S-scheme), a con-
sequence of the Yoneda lemma is that that, for a scheme X, the scheme is deter-
mined up to isomorphism by the functor Homk(−, X), which we call its functor of
points.
So, we can embed the category of k-schemes into a larger category and view them
as functors. The advantages of this point of view is that sometimes, in trying to
construct a scheme, it is easier to define its functor of points and then show its ex-
istence using general methods. An example of scheme defined in this way is the
Hilbert scheme, defined below. Another elementary example showing the philos-
ophy and the methods behind this approach is the construction of the Grassman-
nian, as done for example in chapter 8 of [WG10].

Moduli problems occupy a central question in algebraic geometry. Roughly
speaking, the study of moduli is the study of families of some geometric construc-
tions, like curves, with possibly more strict conditions, like smoothness, of genus
g over a field.
The starting point is a family M over k that we wish to classify up to isomor-
phism. In this case, by a family we do not mean as in the sense of definition 1.2.1,
but a set of geometric objects, like nonsignular connected curves, or line bundles
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over a fixed variety. Then a family of, say, nonsingular connected curves of genus
g over a scheme Y is a flat morphism locally of finite presentation S → Y such
that the fibers of this morphism are nonsingular connected curves of genus g over
k.

Example 1.3.1. A ruled surface S (see example 1.2.3) is a family of genus 0 curves
overP1. To see that it is flat, we use again that S is reduced and thatP1 a Dedekind
scheme.

What we would like to do is to find a scheme X "classifying" the familyM (if
such a space exists) and a universal family over X such that every other family
over every other scheme Y is obtained by pulling back the universal family. By
the Yoneda lemma, such a scheme X would define a functor Sch /kop → Set. With
the functorial point of view in mind, we go the other way around and first define
the functor.

Definition 1.3.2. A moduli problem is a functor F : Sch /kop → Set.

Example 1.3.2. In the case of smooth connected curves of fixed genus g, the moduli
functor would be

F(S) = {families of nonsingular connected curves of genus g over S}/ '

The simplest example of moduli problem is given by corepresentable functor
Homk(−, X). I will denote the functor corepresented by a k-scheme X by X, so
that φ : F → X will mean that φ is a natural tranformation from F to Hom(−, X).
To ask that the moduli problem is represented by a scheme is often too much. So,
we can weaken the request and have the following definition.

Definition 1.3.3. A coarse moduli space for a moduli problem F is the datum of a scheme
X and of a natural transformation φ : F → X inducing an isomorphism F(k) ' X(k),
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with the following universal property: for any other scheme Y and pair (Y, ψ : F → Y)
there is a unique morphism of schemes f : X → Y such that ψ = f φ.
A fine moduli space for a moduli problem F is the datum of a scheme X and of a natural
transformation φ : F → X such that φ is an isomorphism of functors.

If X is a fine moduli for a moduli problem for the familyM, then the family
C ∈ F(X) corresponding to the identity of X via the representing bijection is called
the universal family of the moduli, and it has the following property. If S → Y is a
family of objects ofM over a scheme Y, then there is a morphism f : Y → X such
that S is obtained by pulling back the universal family along f .

Remark 1.3.1. Fine moduli spaces are much rarer to come by than coarse ones.
One reason is that, if there is an element of the family M with nontrivial auto-
morphisms, then there cannot be a fine moduli forM. A qualitative argument for
this can be given a follows. If X is a fine moduli and C the universal family, a fam-
ily S → Y yields a morphsim to X as follows: to a point y ∈ Y, we associate the
point of X corresponding to the fiber Sy. In particular, if all the fibers are the same
scheme T, the induced map Y → X would be constant. Then, since S would be the
pullback of C → X along Y → X, we would have that S is the trivial family, that
is it is isomorphic to Y × T. However, if T has nontrivial automorphisms we can
typically build nontrivial families with all fibers T (the construction is akin to that
of a nontrivial bundle: we cover Y with open subsets, on each of these we take the
trivial family and then we glue them along nontrivial automorphisms of T).

Example 1.3.3. The projective space Pn is a fine moduli space for the following
functor F. Let T a scheme, and F(T) = {(L, x0, . . . , xn) such that L is a line bundle
on T, and the xi’s are global sections of L that globally generate L}, and for a
morphism of schemes f : T → S, then F( f ) : F(S) → F(T) is given by pullback.
That P represents this functor is a consequence of [Har77, II Thm. 7.1].
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Example 1.3.4. Consider the moduli problem of smooth genus g curves, see ex-
ample 1.3.2. If g ≥ 2, Mumford proved that F has a coarse moduli space Mg

(see [MFK94]), and that its dimension is 3g − 3. Riemann had previously stated
that the space of smooth complex curves of genus g ≥ 2 was (3g− 3)− dimen-
sional using a procedure called counting parameters. The existence of Mg shows
Riemann’s statement for arbitrary algebraically closed fields. On the other hand,
using the argument of remark 1.3.1, the existence of ruled surfaces, see remark
1.2.3, implies that there cannot exist a fine moduli space neither of all curves nor
of genus 0 curves.

Generally, the existence of a moduli space, be it fine or coarse, is hard to assess.
Moreover, even if the existence of such a space was proven, the definition alone
usually does not provide much information on the geometric properties of the
moduli space, like smoothness or reducedness. Deformation theory can be used
to study the local geometry of such spaces, and we will see some examples of how
this can be done for a particularly important moduli space, the Hilbert scheme,
which we now define.
Let f : X → S be a projective morphism. For any S-scheme T, let XT be the scheme
X×S T. The Hilbert functor of X as an S-scheme is the functor HX/S : Sch /Sop →
Set defined in the following way. To T ∈ Sch /S we associate the set of closed
subschemes of XT that are flat, proper and locally of finite presentation over T. To
a morphism g : T → T′ associate the pullback function, sending Z ∈ HX/S(T′) to
the pullback of the following diagram:

XT

Z XT′

gX
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Flatness and properness are preserved under pullback. The property of being lo-
cally of finite presentation is also stable under base change, so we indeed get an
element of HX/S(T), and it is easy to see that this assignement actually assembles
to a functor.
The following is a fundamental result of Grothendieck.

Theorem 1.3.4 ([Gro62]). Given a projective morphism X → Spec k, the Hilbert functor
HX/k has a fine moduli space that is morevoer a disjoint union of projective schemes

We denote the scheme in Grothendieck’s theorem by HilbX, and we call it the
Hilbert scheme of X.

Remark 1.3.2. It follows from the definitions that elements of HilbX(k) correspond
bijectively to closed subschemes of X. Hence, since k is algebraically closed, closed
subschemes of X correspond to closed points of HilbX.

We can modify the definition of Hilbert scheme as to only consider closed sub-
schemes with fixed Hilbert polynomial. This is useful if we want to study for
example the family of curves in some projective scheme, or the family of length n
subschemes of a scheme.
Let X ⊂ Pn a projective scheme.

Definition 1.3.5. For a coherent sheaf F on X, the function pF : N → N defined by
pF (n) = ∑n

i=0(−1)ihi(X,F (n)) is called the Hilbert polynomial of F .

Remark 1.3.3. The function in the previous definition is indeed a polynomial func-
tion od degree equal to the dimension of the support of F , see [Har77, III Ex. 5.2].

The hilbert polynomial of the structure sheaf of X is also called the Hibert poly-
nomial of X, and this will be the meaning we will use.
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With the Hilbert polynomial in hand, we can define the variant of the Hilbert
functor.
Let P a numerical polynomial. Consider the functor HP

X sending a scheme T to the
set of closed subschemes Z of XT that are flat, proper and locally of finite presen-
tation over T and such that Z(t) has Hilbert polynomial P for all t ∈ T. A result
similar to 1.3.4 holds for these functors as well, namely that HP

X are representable
by a scheme HilbP

X.

Example 1.3.5. The Hilbert scheme of plane curves is Hilbcurves
P2 =

⊔
P HilbP

P2 where
the union is taken among all numerical polynomials of degree 1. We will show in
chapter 3 that it is smooth.
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Chapter 2

Tangent Spaces

We discuss how to define in a natural way a notion of tangent space to a functor of
Artin rings satisying some mild conditions, and then compute the tangent space
to the local Hilbert functor. In the third section, we show how this computation
can be applied to studying the tangent space of the Hilbert scheme at a closed
point.

Throughout the section, we work with a fixed closed immersion X ⊂ Y of
algebraic schemes.

2.1 Tangent spaces of functors

We saw in 1.1.1 that, given a functor of Artin rings F and a diagram

A′ A′′

A
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in AΛ, there was a natural map α : F(A′ ×A A′′)→ F(A′)×F(A) F(A′′).
Schlessinger introduced in his paper [Sch68] the following conditions:

• H0): F(k) is a singleton;

• H1): if A′ = k[ε], A = k then α is bijective;

• H2): if A′ → A is a small extension, then α is surjective;

• H3): if A′ = A′′, φ = ψ and φ is a small extension then α is bijective.

Their interest lies in the fact that the existence of miniversal and universal formal
families for a functor of Artin rings can be deduced by verifying that some of the
conditions above are satisfied. We will talk about these concepts in chapter 4.

To begin, consider a functor of Artin rings F : AΛ → Set satisfying conditions
H0) and H1).

Proposition 2.1.1. If F is as above, then F(k[ε]) has a structure of of k-vector space,
natural in the sense that if G satisfies H0) and H1) and φ : F → G is a morphism of
functors of Artin rings, then φk[ε] is k-linear.

Proof. Notice that the two conditions imply the chain of isomorphisms

F(k[ε]×k k[ε]) ' F(k[ε])×F(k) F(k[ε]) ' F(k[ε])× F(k[ε])

where we first use H1) and then H0).
We define the sum on F(k[ε]) as follows: consider the morphism + : k[ε]×k k[ε]→
k[ε] defined by (a + bε, a + dε) 7→ a + (b + d)ε. Then the sum on F(k[ε]) is given
by the composition

F(+) · α−1 : F(k[ε])× F(k[ε])→ F(k[ε]×k k[ε])→ F(k[ε])
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We now define multiplication by t ∈ k as follows: consider the morphism t· :
k[ε]→ k[ε] defined by a + bε 7→ a + (tb)ε. We need to show that the operations so
defined indeed yield a structure of k-vector space on F(k[ε]). We verify here only
that they define an abelian group structure, for the other verifications are done
similarly.
Let (+, id) (resp. (id,+)) the morphism from k[ε]×k k[ε]×k k[ε] to k[ε]×k k[ε] which
is + on the first two copies of k[ε] and the identity on the third (the identity on the
first and the sum on the last two copies). Since

k[ε]×k k[ε]×k k[ε] k[ε]×k k[ε]

k[ε]×k k[ε] k[ε]

(+,id)

(id,+)

+

+

commutes, once we apply F we see that the sum on F(k[ε]) is associative. Let
inv it the endomorphism of k[ε]×k k[ε] that acts as follows: inv(a + bε, a + cε)) =

(a + cε, a + bε). Then inv commutes with +, so applying F again we see that the
sum is commutative.
Let i : k → k[ε] be the inclusion, and e the composition k[ε] → k → k[ε]. Then, the
diagram

k[ε] k[ε]×k k[ε] k[ε]

k

e×id

m

id×e

commutes. Since F(k) is a singleton, we see that the image of F(e) is the unit
of F(k[ε]). Finally, to see that there is an additive inverse, notice that there is a
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commutative diagram

k[ε] k[ε]×k k[ε] k[ε]

k

τ×id

+

id×τ

where τ sends a + bε to a− bε. Applying F to this diagram, we conclude. Consid-
ering now the leg of φ at k[ε], the verification that φk[ε] is k-linear is done again by
standard computations similar to the one above.

In view of the previous proposition, we give the following definition:

Definition 2.1.2. Consider a functor of Artin rings F satisfying conditions H0) and H1).
We then call the k-vector space F(k[ε]) the tangent space of F, and we denote it by tF. If G
satisfies the same conditions, the differential of φ is the linear map φk[ε] : tF → tG which
we denote by dφ.

As the geometric terminology suggests, the tangent space to a functor of Arting
rings and the differential of a morphism have indeed a geometric meaning. We
will see how in section 2.3.

For functors F satisfying condtions H0) and H1) we can then add the following
condition:

• H4): tF is finite-dimensional as a k-vector space.

2.2 First order deformations

In the previous section we defined the tangent space to a functor of Artin rings. We
will now compute the tangent spaceto the functor HY

X. We will need the following
result, often called the local criterion for flatness:
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Theorem 2.2.1 ([Mat86, Theorem 22.3]). Consider a surjection A → A′ in AΛ. Let
M an A-module. Then M is flat if and only if M ⊗A A′ is flat as an A′ module and
TorA

1 (M, A′) = 0.

An application of the local criterion is the following proposition, which will
be crucial in proving that the local Hilbert functor satisfies the Schlessinger con-
ditions.

Consider the following situation: we are given maps of Artin rings A′ → A
and A′′ → A, with the latter surjective. Suppose we are also given modules M′,
M′′, M over A′, A′′, A respectively, with maps M′ → M, M′′ → M compatible
with the module structures. Suppose moreover that the maps M′⊗A′ A→ M and
M′′ ⊗A′′ A → M′′ are isomorphisms. Finally, we assume that M′ is flat over A′

and M′′ is flat over A′′. Denote A′ ×A A′′ and M′ ×M M′′ by Ā and M.

Lemma 2.2.2. Keeping the above notations, there are isomorphisms M ⊗Ā A′′ → M′′

and M⊗Ā A′ → M′. Moreover, M is flat over Ā.

Proof. Consider the following diagram

0 ker f M M′

0 ker g M′′ M

f

g

It commutes by definition of M. Since A′′ → A→ 0 is exact, applying −⊗A′′ M′′,
we find that g is surjective. Diagram chasing now shows that f is also surjective.
If we now tensor the upper row by A′, we find that M⊗Ā A′ → M′ is surjective.
Similarly, one sees that Ā → A is surjective, with kernel (0, a′′) where a′′ is in the
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kernel of A′′ → A. We prove injectivity: if ∑(m′i, m′′i )⊗ bi goes to zero, then ∑ a′i ·
m′i = 0, where a′i (resp. a′′i ) is the image of bi ∈ Ā in A′ (in A′′). But ∑(m′i, m′′i )⊗
bi = ∑(a′i · m′i, a′′i · m′′i )⊗ 1 = (0, ∑ a′′i · m′′i )⊗ 1 and we deduce that the image of

∑ a′′i ·m′′i in M is 0. So, when tensoring by −⊗Ā A′, the element ∑ a′′i ·m′′i goes to
zero, and hence M⊗Ā A′ → M′ is indeed an isomorphism of A′-modules.
If I is the kernel of A′′ → A, tensoring the sequence 0 → I → A′′ → A → 0 with
−⊗A′′ M′′ to get

0 I ⊗A′′ M′′ M′′ M 0

This sequence is exact beacuse of flatness of M′′. Moreover, there is an isomor-
phism

I ⊗A′′ M′′ ' I ⊗A (A⊗A′′ M′′) ' I ⊗A M

Going back to the diagram above, we found that ker g is I ⊗A M. Moreover, di-
agram chasing shows that there is a bijection between ker f and ker g. Consider
now the following morphism: Ā → A′, (a′, a′′) 7→ a′. Since A′′ → A is surjective,
this morphism is surjective, too. We can compute its kernel: it’s made of the pairs
(0, a′′) such that a′′ goes to 0 under the projection A′′ → A, so it is isomorphic to
I.
The following chain of isomorphism shows then that ker f is isomorphic to I ⊗Ā

M.

ker f ' I ⊗A M ' I ⊗A (A⊗A′ M′) ' I ⊗A′ M′ ' I ⊗A′ (A′ ⊗Ā M) ' I ⊗Ā M

So, the sequence 0→ I ⊗Ā M→ M→ M′ → 0 is exact. We conclude that

TorĀ
1 (M, A′) = 0
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Moreover, we proved above that M⊗Ā A′ ' M′, so it is flat over A′. We conclude
by theorem 2.2.1 that M is flat over Ā.
It only remains to prove that he map M ⊗Ā A′′ → M′′ is an isomorphism. We
tensor the sequence 0→ I → A′′ → A→ 0 with −⊗Ā M, to get the sequence

0→ I ⊗Ā M→ A′′ ⊗Ā M→ A⊗Ā M→ 0

The first non-zero term is isomorphic to I ⊗A′′ M′′ (we proved it above when jug-
gling with the kernels), and the last non-zero term is

A⊗Ā M ' A⊗A′ (A′ ⊗Ā M) ' A⊗A′ M′ ' M

where the last isomorphism follows from our initial assumptions. If we then com-
pare the sequence we obtained with 0→ I⊗A′′ M′′ → M′′ → M→ 0, the 5-lemma
implies the desired isomorphism.

If X is a topological space, F , S and O are sheaves of rings over X together
with morphisms of sheaves of rings F → O, S → O, then we can define another
sheaf F ×O S on X by (F ×O S)(U) = F (U)×O(U) S(U) for every open subset
U of X. It is the fibered product of F and S overO in the category of sheaves over
X.

Theorem 2.2.3. The functor HY
X satisfies the Schlessinger’s conditions H0) through H3).

Proof. Clearly HY
X(k) = {X → Y}, so H0) is verified.

For the other conditions, we prove something stronger, that is that, for every dia-
gram

A′ A A′′
ψ φ
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where φ is a small extension, then the map α is a bijection. This will imply all the
Schlessinger conditions.
Call Ā = A′ ×A A′′. Consider an element of HY

X(A′)×HY
X(A) HY

X(A′), that is a pair
of embedded deformations ξ ′ ∈ HY

X(A′), ξ ′′ ∈ HY
X(A′′) such that both ξ ′ and ξ ′′

pullback to the same deformation ξ over A

ξ ′ ×Spec A′ Spec A ' ξ ' ξ ′′ ×Spec A′′ Spec A

Let O′, O′′ and O the structure sheaves of ξ ′, ξ ′′ and ξ, respectively. These are
all sheaves on the same topological space X by remark 1.2.1. Consider the locally
ringed space ξ̄ = (X,O′ ×O O′′). We can work locally to see that ξ̄ is a scheme.
There is a morphism ξ ′ → ξ̄ which is the identity on the underlying topological
space, and the sheaf map is id∗(O′ ×O O′′) = O′ ×O O′′ → O′ is the structure
map of the pullback, and a similar morphism ξ ′′ → ξ̄. From the properties of the
fibered product, it follows that these morphisms make the following diagram a
pushout diagram

ξ ξ ′

ξ ′′ ξ̄

From the definition of ξ̄, it also follows readily that it is a scheme over Spec Ā:
one checks it locally using that both ξ ′ and ξ ′′ are schemes. Since flatness can be
checked locally, we can apply lemma 2.2.2 to conlcude that it is flat an Ā-scheme.
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The following diagram, where all the maps are the "natural" ones, is commutative

ξ ′ Spec A′

ξ̄ Spec Ā

so there is an induced morphism ξ ′ → ξ̄ ×Spec Ā Spec A′. We can use again lemma
2.2.2 to check locally that this is an isomorphism, that is, ξ̄ pulls back to ξ ′. In the
same way one proves that ξ̄ pulls back to ξ ′′ along Spec A′′ → Spec Ā.
We now have to prove that ξ̄ is an element of HY

X(Ā). The compositions

ξ ′ → Spec A′ ×Y → Spec Ā×Y

ξ ′′ → Spec A′′ ×Y → Spec Ā×Y

restrict to the same morphism on ξ, and the first one is a closed emebdding, be-
cause composition of closed embeddings. Again by the pushout property we get
a morphism φ : ξ̄ → Spec Ā× Y. Moreover, since ξ ′ → ξ̄ is a closed embedding
with square-zero kernel sheaf and ξ ′ → Spec Ā× Y is a closed embedding, φ is a
closed embedding, too.
Finally, since both ξ ′ and ξ ′′ are locally of finite presentation over A′ and A′′,ξ̄
is locally of finite presentation over Ā. To prove this we work locally, so that we
restrict to proving a proposition similar to lemma 2.2.2, but with the property of
being of finite presentation rather than being flat, and it is immediate to see that
this is true. So we have finally proven that ξ̄ in an element of HY

X(Ā). Moreover, it
maps to (ξ ′, ξ ′′) under α, so α is surjective.
If ξ̄ ′ is another preimage of (ξ ′, ξ ′′), then the pushout property yields a morphism
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ξ̄ → ξ̄ ′ which is also an isomorphism. Since the following diagram commutes

Y× Spec Ā

ξ̄ ξ̄ ′

we conclude that ξ̄ = ξ̄ ′, so α is also injective, which concludes the proof.

Since HY
X satisfies H0) and H1), we saw in the previous section that the first

order emebdded deformations of X in Y form a k-vector space. Our next objective
is to compute this space. Properties H2) and H3) will be relevant in the next two
chapters.
We will need the following well known homological lemma:

Lemma 2.2.4 (9-lemma). Suppose we are given in a diagram

0 0 0

0 A′ A A′′ 0

0 B′ B B′′ 0

0 C′ C C′′ 0

0 0 0
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in an abelian category, where all the squares are commutative and the columns are exact.
Then

• If the bottom two rows are exact, so is the top row

• If the top two rows are exact, so is the bottom row.

We can now prove the main result of this section. First, we need to recall a
definition.

Definition 2.2.5. Let X → Y a closed embedding corresponding to a sheaf of ideals I .
The normal sheaf of X in Y is the sheaf H omOX(I/I2,OX). We will use the notation
NX/Y to denote it.

Theorem 2.2.6. Let X → Y a closed embedding. Then the tangent space to HY
X is

H0(X,NX/Y).

Proof. Step 1: affine case In this case, Y = Spec B for some k-algebra B, and X is
Spec B/I. Rewriting the definition of first order deformation in the language of
affine scheme, we see that first order embedded deformations of X correspond to
ideals I′ ⊂ B′ = B[t]/(t2) = k[ε]⊗ B such that k[ε]→ B′/I′ is a flat morphism and
B′/I′⊗ k = B/I. Moreover, in the affine case, H0(X,NX/Y) = HomB/I(I/I2, B/I) '
HomB(I, B/I).



40 Chapter 2. Tangent Spaces

We start by, given an embedded deformation corresponding to the ideal I′, con-
structing an element of HomB(I, B/I). Consider the following diagram:

0 0 0

0 I I′ I 0

0 B B′ B 0

0 B/I B′/I′ B/I 0

0 0 0

t·

t·

t·

The middle row is exact, so by lemma 2.2.4 exactness of either the first or the last
row implies exactness of the other one.
Since we are given an element of HY

X(k[ε]), the bottom row of the diagram is exact:
indeed, it is obtained by taking the tensor product of the sort exact sequence

0→ k→ k[ε]→ k→ 0

with the module B′/I′, and the resulting short sequence is exact since B′/I′ is flat.
Hence, the first row is exact, too. Given x ∈ I, let x + ty ∈ I′, x + ty′ ∈ I′ be two
liftings of x. Then t(y− y′) ∈ tI by exactness of the first row, so ȳ ∈ B/I is well
defined. It can now easily be shown that the assignement x 7→ ȳ yields a B-module
homomorphism I → B/I.
We now do the opposite: given an element of HomB(I, B/I), we build a first order
embedded deformation. Suppose then we are given a B-morphism φ : I → B/I.
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Let π : B→ B/I denote the projection. The set I′ = {x + ty, y ∈ B such that x ∈ I
and φ(x) = π(y)} is an ideal of B[t]/(t2). It is clear that B′/I′ ⊗ k ' B/I, so we
only need to check that B′/I′ is flat as a k[ε]-algebra. We have that the image of I′

under the projection B′ → B is exactly I, and the short sequence

0→ I t·−→ I′ → I → 0

is exact. So, using again 2.2.4 we get that the bottom row of the diagram above is
exact. This implies that Tork[ε]

1 (B′/I′, k) = 0, so we conclude by applying the local
criterion for flatness.
The two constructions are mutual inverses, so we obtain the desired isomorphism
between HY

X(k[ε]) and HomB(I, B/I).
Step 2: global case Let I be the ideal sheaf of i : X → Y. We cover Y with affine sets.
The construction above is compatible with localizations, so we can glue the iso-
morphism locally to get a one-to-one correspondence between elements of HY

X(k[ε])
and elements of H0(H omOY(I , i∗OX)) ' H0(H omOX(I/I2,OX)) = H0(X,NX/Y).

Corollary 2.2.7. If X is proper, then HY
X satisfies all the Schlessinger conditions H0)

through H4).

Proof. The first 4 conditions are satisfied by theorem 2.2.3. Since the tangent space
is given by the global sections a coherent sheaf on X, condition H4) follows from
properness.

In the case that interests us, that is in the study of the Hilbert scheme, Y is a
projective scheme, and so X is too, so that the corollary will be satisfied.
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2.3 Tangent space of the Hilbert scheme

We assume Y to be projective over k. As with all deformation theory results, the
computations of the previous section have a geometric interpretation for moduli
problems. We recall the definition of tangent space for k-rational points:

Definition 2.3.1. Let X a scheme and x ∈ X(k). Let mx the maximal ideal of the local
ring of x. The tangent space of X at x is the k-vector space TX, x = (mx/m2

x)
∨.

It is easy to see that there is the following equivalent definition: if A ∈ A, let
X(A)x denote the set of morphisms Spec A → X having image x. This defines a
functor of Artin rings X(−)x : A → Set.

Proposition 2.3.2. The tangent space of X(−)x is isomorphic to TX, x.

Proof. A morphism Spec(k[ε])→ X with image x is the datum of a local morphism
of k-algebras φ : OX,x → k[ε], so we prove that the space of the latter ones is
isomorphic to (mx/m2

x)
∨. Since φ is local, φ(mx) ⊂ εk ' k, and moreover since the

latter is square-zero, φ(m2
x) = 0, so we get a well defined morphism φ̄ : mx/m2

x →
k. Conversely, given such a φ̄, let φ : mx → εk defined by m 7→ εφ(m mod m2

x).
Now, every element of OX,x can be written in a unique way as the sum of an
element of k and an element of mx, so if a = b+m, with b ∈ k and t ∈ mx, we define
φ(a) to be equal to a + φ(t). It can now be checked that this is a local morphism of
k-algebras and that the two constructions are inverses to each other.

This shows that the notion of tangent space to a functor of Artin rings is really
of geometric nature. This can also be said for the differential (see definition 2.1.2).
Indeed, given a morphism f : X → Y, we recall here the definition of differential
of f . If x ∈ X(k) maps to y ∈ Y(k) (notice that if x is k-rational, its image must
be k-rational as well), then the local map φ : OY,y → OX,x induces a morphism
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φ̄ : my/m2
y → mx/m2

x, which becomes a map d f : TX,x → TY,y by taking the dual.
We call this map the differential of f at x.
Notice that, in this situation, there is also a morphism of functors of Artin rings
f∗ : X(−)x → Y(−)y, obtained by post-composing with φ. Then, with computa-
tions as above, we can show that the "functor theoretic" differential of f∗ is indeed
the "geometric" differential d f .

With the discussion above, we can now find some first informations on Hilbert
schemes. Indeed, all of this chapter’s work gives us the necessary tools to finding
the tangent space to points in the Hilbert scheme.
Let X ⊂ Y be a closed subscheme and x the corresponding closed point of HilbY

(see remark 1.3.2). Unwinding the definition of the Hilbert scheme, we see that
elements of HilbY(A)x correspond bijectively with proper flat subschemes of Y×
A that pullback to X in Y× Spec k = Y, that is to elements of HY

X(A). The bijection
is natural, hence we get the following result.

Proposition 2.3.3. Let X ⊂ Y a closed subscheme and x the corresponding closed point
of HilbY. Then there is an isomorphism of functors HY

X ' HilbY(−)x.

Evaluating the two functors in k[ε], we get the following description for the
tangent space of the Hilbert scheme.

Corollary 2.3.4. The tangent space of HilbY at x is H0(X,NX/Y).

Remark 2.3.1. The arguments above imply the prorepresentability of HY
X. Indeed,

X corresponds to a closed point x of HilbY. Using proposition 2.3.3 immediate
to see that HY

X is prorepresented by ÔHilbY , x. A proof of this fact not relying on
the difficult result that HilbY is representable can be given using Schlessinger’s
criterions.
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Remark 2.3.2. In the same way as above one can deduce what the tangent spaces to
fine moduli spacesM. One considers the functor F of infinitesimal deformations
of an object X of the familyM and computes its tangent space. Arguments similar
to the ones above show that the tangent space to the moduli space in the point
corresponding to X is the tF. See [Ser06, Chapter 1.2] and [Ser06, Chapter 2.4] for
a study of the functors DefX and Def′X and their tangent space. For deformations
of line bundles, and more in general, quasicoherent sheaves, see [Ser06, Chapter
3.3], [Har10, Chapter 6] and [Har10, Chapter 7].



45

Chapter 3

Liftings and obstructions

In this section we fix a functor of Artin rings F : AΛ → Set. All extensions will
be Λ-extension, and so we will drop the prefix Λ. As in the previous section, we
work with a fixed closed immersion X ⊂ Y of algebraic schemes.

In the first part, given a small extension of artin rings, we define what are the
lifings of a fiexed element ξ ∈ F(A), and show how these liftings interact with
the tangent space tF of F. We also introduce the concept of obstruction to a lifting
and obstruction space. In the second, as usual, we specialize to the local Hilbert
functor. In the third part we apply all this machinery to proving the smoothness
of some Hilbert schemes.

3.1 Liftings

Definition 3.1.1. Given a small extension φ : A′ → A and an element ξ ∈ F(A),
a lifting of ξ to A′ is an element ξ̃ ∈ F(A′) such that F(φ)(ξ̃) = ξ. We denote by
Lif(A, A′, ξ) the set of liftings of ξ ∈ F(A) to A′.

We now show that, if F satisfies all the Schlessinger conditions, there is a close
relationship between the tangent space to F and the set of liftings.
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Theorem 3.1.2. Suppose the functor F satisifes all the Schlessinger conditions H0) through
H4). Let φ : A′ → A a small extension, and ξ ∈ F(A). Then there is a free and transitive
action of tF on Lif(A, A′, ξ).

To prove theorem we start by proving smaller pieces.

Proposition 3.1.3. If F satisfies conditions H0) and H1) there is an isomorphism θ :
F(A′ ×A A′)→ F(A′)× tF.

Proof. We start by considering the following map: β : A′×A A′ → A′×k k defined
by (a, b) 7→ (a, ā + ε(a− b)). Here ā is the image of a under the quotient A → k,
and the difference a− b is an element of k since it is an element of the kernel of φ,
and by remark 1.1.3 the kernel is isomorphic to k. Then we show that β is a map
of Λ-algebras and that it is an isomorphism.
It is clearly additive, so we verify that it preserves products. Given also (a′, b′) ∈
A′ ×A A′, we have

β(aa′, bb′) = (ab, āb + ε(aa′ − bb′)

while
β(a, b) · β(a′, b′) = (aa′, ā(b̄)) + āε(a′ − b′) + ā′(a− b)

Write ā = a + t, with t ∈ ker(φ). Since a− b ∈ ker(φ) and ker(φ)2 = 0, then

āε(a′ − b′) = εa(a′ − b′)

So, the ε-component of β(a, b) · β(a′, b′) is aa′ − ab′ + a′a + a′b. But,

−ab′ + aa′ + a′b− bb′ = a(a′ − b′)− b(a′ − b′) = (a− b)(a′ − b′) = 0

So, aa′ − ab′ + a′a + a′b = aa′ − bb′ and hence β is a ring morphism. Moreover,
since Λ acts on both rings by multiplication on each coordinate, so the morphism
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is clearly of Λ-algebras.
If β(a, b) goes to zero, then a must be zero, so b must be zero too. Conversely,
given (a, ā + εt) ∈ A′ ×k k[ε], then (a, a − t) is a preimage of said element. Here
we see t as an element of A′ via t ∈ k = ker(φ) ⊂ A′. We conclude that β is an
isomorphism.
Then, the composition

F(A′ ×A A′)→ F(A′)×F(k) F(k[ε])→ F(A′)× tF

yields the desired isomorphism. Here the first map is the composition of F(β) and
the map α of remark 1.1.1, and it is an isomorphism because F(β) is and because α

is a bijection because of property H1). The second map is an isomorphism because
of property H0).

The isomorphism θ has the following property: if π1 is the projection A′ ×A

A′ → A′ on the first coordinate, and if π̃ : F(A′)× tF → F(A′) is also the projec-
tion on the first coordinate, then the following diagram commutes

F(A′ ×A A′) F(A′)× tF

F(A′) F(A′)

F(π1)

θ

π̃

id

Consider now the following map:

µ : F(A′)× tF → F(A′ ×A A′)→ F(A′)

where the second map is the projection on the second coordinate.

Proposition 3.1.4. The composition above defines an action of tF on F(A′).
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Proof. We start by verifying that µ(ξ, 0) = ξ for all ξ ∈ F(A′). Let δ : A′ → A′ ×A

A′ be the diagonal map a 7→ (a, a). Under the bijection F(A′)× tF ' F(A′ ×A A′),
elements of the form (ξ, 0) correspond to the image of F(δ)

F(A′)× tF

F(A′) F(A′ ×A A′)

F(A′)×F(A) F(A′) F(A′)

'
µ

f (δ)

ι

F(π)
α

where ι is the map x 7→ (x, 0) and π the projection on the second factor.
Following the above diagram one finds that indeed µ(ξ, 0) = ξ.
We now verify the additivity of the action, that is that for every ξ ∈ F(A′) and
a, b ∈ tF we have µ(µ(ξ, a), b) = µ(ξ, a + b). First, we notice that we can show that
there is an isomorphism between A′ ×A A′ ×A A′ and A′ ×k k[ε]×k k[ε] as done in
proposition 3.1.3, and we get an bijection F(A′ ×A A′ ×A A′) ' F(A′)× tF × tF.
We need to show that the diagram

F(A′)× tF × tF F(A′)× tF

F(A′)× tF F(A′)

µ×id

id×F(+) µ

µ

commutes. But following the right-then-down direction of the diagram amounts
to applying F to the projection on the third factor A′×k k[ε]×k k[ε] ' A′×A A′×A

A′ → A′. On the other hand, the map id × F(+) is induced by the morphism
A′ ×k k[ε] ×k k[ε] → A′ ×k k[ε] induced by (a, ā + bε, ā + cε) 7→ (a, ā + (b + c)ε).
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Then, to get µ we apply F to the projection on the second factor A′ ×k k[ε] '
A′ ×A A′ → A′. Since we can verify that both the compositions are the same as
maps of rings, we get that the diagram above commutes.

We can now prove theorem 3.1.2: we have a map

F(A′)× tF ' F(A′ ×A A′)→ F(A′)×F(A) F(A′)

Since we assume that F satisfied all the Schlessinger conditions, the map above is
a bijection. Moreover, we can explicitly describe it: it is given by the assignement
(ξ, v) 7→ (ξ, µ(ξ, v)). If we fix ξ ∈ F(A′), using the fact that the map above is bi-
jective we see that the fiber of F(φ)(ξ) are precisely the elements of the form ξ · v
and that if v 6= w, then ξ · v 6= ξ · w. In other words, tF acts in a free and transitive
way on the fiber of F(φ)(ξ).

As a corollary, we obtain the following useful statement:

Corollary 3.1.5. Assume F satisfies all the Schlessinger conditions except at most condi-
tion H3). Then, condition H3) is satisfied if and only if the action µ is free and transitive
on the fibers of F(φ) for every small extension φ : A′ → A.

Proof. The functor F satisfies H0) and H1), so tF acts on Lif(A, A′, ξ) by the map-
ping (ξ, v) → (ξ, ξ · v). If (ξ, v) and (ξ ′, v′) have the same image in F(A′) ×F(A)

F(A′), then ξ = ξ ′, and v = v′ if and only if the action is transitive, so injectivity
of α is equivalent to the freeness of the action.
Viceversa, given (ξ, ξ ′) ∈ F(A′)×F(A) F(A′), they are both in the fiber of F(φ)(ξ),
so there is a preimage (ξ, v) in F(A′ ×A A′) exactly when ξ · v = ξ ′, that is, when
the action is transitive.
Condition H3) is satisfied if α : F(A′×A A′)→ F(A′)×F(A) F(A′) is a bijection for
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every small extension A′ → A, and the discussion above shows that, given φ, the
map α is a bijection if and only if tF acts in a free and transitive way on the fibers
of F(φ).

We end the section with a definition. We recall that we saw in 1.1.6 that o(A/Λ)

is a k-vector space.

Definition 3.1.6. A k-vector space o(F) is called an obstruction space for F if it satisfy
the following properties:

• for every A ∈ AΛ and ξ ∈ F(A) there is a k-linear map o(ξ) : o(A/Λ)→ o(F);

• a small extension φ : A′ → A is in ker(o(ξ)) iff and only if ξ is in the image of
F(φ) : F(A′)→ F(A);

If 0 is an obstruction space for F, we say it is unobstructed.

Notice that the obstruction space to a functor F needs not be unique: indeed,
even for an unobstructed functor, any vector space is an obstruction space taking
oξ to be the null function for every ξ. We will however see in the next section that,
under some suitable hypothesis, we can find a "canonical" obstruction space for
the functor HY

X.

3.2 Obstructions for closed subschemes

We study the concept of obstructions introduced in the previous section in the
case of embedded deformations. We assume Y projective.

Definition 3.2.1. Given an embedded deformation ξ ∈ HY
X(A) of X in Y over A and a

small extension φ : A′ → A, we say that liftings of ξ exist locally if there is an affine
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open covering (Yi)i of Y such that on each Yi there exists an embedded deformation of
Xi = X ∩Yi over A′ that pulls back to ξ|Xi . If this can be done for all small extensions in
AΛ, we say that the embedding of X in Y is locally unobstructed.

In other words, liftings exist locally if, on some covering, we can lift the re-
striction of the deformation. Since we want to find a global extension, we want to
understand when these local liftings glue to a global one. The following theorem
answers this question.

Theorem 3.2.2. Let φ : A′ → A a small extension, ξ ∈ HY
X(A) and assume that liftings

of ξ exist locally. Then there exists an element oξ(φ) ∈ H1(X,NX/Y) such that oξ(φ) is
zero if and only if there exists a lifting ξ ′ ∈ HY

X(A′) of ξ.

Proof. We call X′i the local liftings on Xi and Yij = Yi ∩ Yj, and similarly for triple
intersections. On Yij we have two liftings: X′i ∩Yij and X′j ∩Yij. Both are liftings of
Xij = X ∩Yij, so by theorem 3.1.2, there is a unique element αij ∈ NX/Y(Xij) such
that (Yij ∩ X′i) · αij = (Yij ∩ X′j).
The element (αij)ij ∈ Č1((Xij)ij,NX/Y) just constructed is a Čech 1-cocycle. In-
deed, since the action of the tangent space of HY

X on the set of liftings is free and
transitive, we have αik = αij + αjk on triple interesections Xijk.If we choose an-
other set of liftings (X′′i )i and (βij)ij is the cocycle associated to these liftings, we
show that the two cocycles differ by a coboundary. Again by theorem 3.1.2, we
know that there exist hi ∈ NX/Y(Ui) such that X′i = X′′i · hi. we also have that
X′j ∩ Yij = (X′i ∩ Yij) · αij = (X′′i ∩ Yij) · (hi + αij). But X′j ∩ Yij = (X′′j ∩ Yi j) · hj =

(X′′i ∩Yij) · (βij + hj). The action is free, so αij = βij + hj − hi, so we are done.
Moreover, the Yi are by assumption affine, and so the Xi are affine, too. By sepa-
ratedness of X, it follows that the cohomology class does not depend on the open
covering we used.
If the cohomology class so constructed is zero, then we can write αij = hi − hj. So,



52 Chapter 3. Liftings and obstructions

we can multiply by the hi’s to modify the local liftings X′i so that they are compat-
ible. Hence, they glue to give a global lifting. Viceversa, if the local liftings define
a global one, then the αij are the identity, so its cohomology class is 0.

If we assume that X is locally unobstructed, fixing A and a deformation ξ ∈
HY

X(A), the previous proposition implies the existence of a function of sets

oξ : o(A/Λ)→ H1(X,NX/Y)

sending a small extension φ : A′ → A to the cohomology class oξ(φ) constructed
in the proof of theorem 3.2.2.

Proposition 3.2.3. The function oξ(−) is a linear map.

Proof. Consider the trivial extension π : A ∗ k → A, which is the zero of o(A/Λ).
There is a morphism i : A → A ∗ k which gives the identity of A when composed
with π. Then this implies that i](ξ) ∈ HY

X(A ∗ k) is a lifting of ξ, so oξ(π) is zero
by theorem 3.2.2.

Take now two small extensions φ : A′ → A, ψ : A′′ → A, such that oξ(A′)
(resp. oξ(A′′)) is represented by (αij) (resp. βij). The sum of φ and ψ was defined
to be the small extension (A′×A A′′)/I, where I is the kernel of the sum morphism
k2 → k. Take now local liftings (X′i)i (resp.(X′′i )i)) over A′ (resp. A′′) (notice that,
a priori these two local liftings are not defined locally on the same open covering,
but we can take a refinement of both coverings and hence suppose that the open
sets underlying X′i and X′′i are the same for every i). Then, for every i we have
an element of HYi

Xi
(A′)×

H
Yi
Xi

(A)HYi
Xi
(A′′). So, by theorem 2.2.3 X′i and X′′i define a

deformation of Xi over A′ ×A A′′ that pulls back to Xi, i.e. a set of local liftings of
X over A′ ×A A′′.
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As done in theorem 3.2.2, we can now assign an element of H1(X,NX/Y)⊗k k2 cor-
responding to these local liftings. In this case, there is an additional factor −⊗k k2

because A′ ×A A′′ is not a small extension over A, but has kernel of length 2. In-
deed, just as done in theorem 3.2.2, one can show that if X is locally unobstructed
and if B → A has kernel of length n, there is an element in H1(X,NX/Y) ⊗k kn

representing the local liftings over B, with the porperty of being 0 if and only
if the local liftings glue to a global one. Moreover, the morphism π1

] projecting
H1(X,NX/Y)⊗k k2 on its first (resp. second) component is the morphism that cor-
responds to the projection π1 : A′ ×A A′′ → A′ (resp. the projection π2 to A′′),
in the following sense. If X̄i are local liftings on A′ ×A A′′ and γij the cobound-
ary associated to these liftings, then π1

] (γij) is the coboundary associated to the
local liftings π1

] (X̄i) = X′i , that is, π1
] (γij) = αij (resp. (π2

] (γij) = βij). this follows
again by freeness of the action of the tangent space on local liftings. It follows that
(γij) = (αij, βij) ∈ H1(X,NX/Y)⊗k k2. Finally, if f is the projection A′ ×A A′′ →
(A′ ×A A′′)/I, there is a morphism f] : H1(X,NX/Y)⊗k k2 → H1(X,NX/Y) that
assigns (γij) to the cohomology class of the small extension φ + ψ, done exactly
as above. f] is the morphism induced by the sum morphism k2 → k (this follows
again from freeness of the action of tF), so f](γij) = αij + βij, so we conclude that
oξ(φ + ψ) = oξ(φ) + oξ(ψ).
Finally, let x ∈ k∗ and φ ∈ o(A/Λ) a small extension. Arguing as above and us-
ing again the freeness of the action of the tangent space, we find that x · oξ(φ) =

oξ(x · φ).

We can rephrase the previous results in terms of the obstruction spaces intro-
duced in definition 3.1.6:

Proposition 3.2.4. Let X locally unobstructed in Y. Then the space H1(X,NX/Y ) is an
obstruction space for the functor HY

X.
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Proof. It follows from theorem 3.2.2 and 3.2.3.

Theorem 3.2.2 is interesesting, albeit not very useful if we don’t know whether
the embedding X ⊂ Y admits local liftings or not. The following results, whose
proofs can be found in [Har10] give examples of cases in which the assumptions of
theorem 3.2.2 are satisfied, and which we will use in the third part of the chapter.

First, a definition.

Definition 3.2.5. A scheme X is Cohen-Macaulay if all the local rings OX,x are Cohen-
Macaulay.

Theorem 3.2.6 ([Har10, Thm. 8.3]). Let Y a smooth scheme, and X ⊂ Y a closed sub-
scheme of codimension 2 which is also Cohen-Macaulay Then X is locally unobstructed in
Y.

Another useful instance in which we have local unobstructedness is when X is
a locally complete intersection.

Definition 3.2.7. A closed subscheme X of a smooth variety Y is a a local complete in-
tersection in Y if the sheaf ideal IX can be locally generated by CodimY(X) elements at
every point. A closed subscheme X ⊂ Pn is a complete intersection if the associated ideal
IX ⊂ k[x0, . . . , xn] can be generated by CodimPn(X) elements.

We notice that every global complete intersection is trivially a local one.

Theorem 3.2.8 ([Har10, Thm. 9.2]). Let X ⊂ Pn a locally complete intersection scheme.
Then X is locally unobstructed in Pn.

Every smooth closed subscheme of a smooth scheme Y is a local complete
intersection in it, see [Har77, II Thm. 8.17]. We have thus the following:

Corollary 3.2.9. If X ⊂ Y is a smooth closed subscheme of a smooth variety, then X is
locally unobstructed in Y.
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3.3 Geometric applications

In this section we are interested in showing some simple examples of how the the-
ory of the obstructions can be used to prove some results about Hilbert schemes.
So, for the remainder of the chapter we assume that Λ = k. We use the results
of the previous sections to examine in greater detail some Hilbert schemes. We
start by exploring the concept of formal smoothness. To do so, we will need the
following criterion for smoothness.

Theorem 3.3.1 (Finch’s theorem). Let X be an algebraic scheme such that for every
small extension φ : A′ → A and for every morphism f : Spec A → X there is a
morphism g : Spec A′ → X that lifts f , that is f = g · Spec(φ). Then X is smooth.

The condition of theorem 3.3.4 is a special case of the formal criterion for smooth-
ness and is usually depicted with the following diagram

Spec A X

Spec A′ Spec k

f

Spec(φ)
g

In the proof of the theorem, we will need the following two propositions.

Proposition 3.3.2. Let B be a Noetherian local ring, and B̂ be its completion. Then B is
regular if and only if B̂ is regular.

A proof can be found in https://stacks.math.columbia.edu/tag/07NY.
The second one is:

https://stacks.math.columbia.edu/tag/07NY
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Lemma 3.3.3. Let A be a Noetherian local k-algebra with residue field k and maximal
ideal m. If f : A → A is a k-morphism inducing an isomorphism f̄ : A/m2 → A/m2,
then f is an isomorphism.

Proof. Let I the ideal generated by the images of the generators mi of m. If f̄ is
an isomorphism, then I/m2 ' m/m2, so m = m2 + I. So, m/I = m2/I. Apply-
ing Nakayama’s lemma, we find that I = m, i.e. f (m) = m. Moreover, since the
residue field of A is k, every element of A can be written in a unique way as a
sum of an element of k (which is a subring of A, since A is a k-algebra) and of m.
Indeed, if i : k → A is the structure morphism and π : A → k the projection, if
a ∈ A, a = i(π(a)) + (a− i(π(a))).
Being a k-morphism, f is the identity on elements of the form i(t), t ∈ k. Since we
know that f (m) = m, we conclude that f is surjective.
To prove injectivity, note that A is an A[x]-module by g(x) · a = g( f )(a). Sur-
jectivity of f implies that A = (x) · A, so by Nakayama’s lemma there exists
g ∈ (x) such that g mod (x) = 1 and g · A = 0. So, let g(x) = 1 + xp(x), and let
a ∈ ker( f ). So, 0 = g · a = a + xp(x) · a = a, from which we conclude.

We now prove theorem 3.3.1.

Proof. We have to prove that for every closed point x of X, the local ring OX,x is
regular. This statement is local, so we reduce to the affine case. So, we may assume
to have a local k-algebra B that is the localisation of a k-algebra of finite type and
having k as residue field, with the property that for every solid diagram

k A′

B A

φ
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where φ is a surjection of k-Artinian algebras, there is a dashed arrow that makes
the diagram commute.
Let b1, . . . , bn minimal generators of the maximal ideal m of B. There are compat-
ible surjective morphisms of k-algebras ri : k[x1, . . . , xn]/(x1, . . . , xn)i = Ri →
B/mi obtained by mapping xj 7→ bj. Taking the inverse limit, this yields a surjec-
tive morphism

r : k[[x1, . . . , xn]]→ B̂

Call p the ideal (x1, . . . , xn) ⊂ k[x1, . . . , xn]. By minimality of the bi’s, r2 restricts
to an isomorphism of the submodules p/p2 and m/m2. Both rows of the following
commutative diagram are exact, so by the 5−lemma we conclude that r2 is an
isomorphism.

0 p/p2 R2 k 0

0 m/m2 B/m2 k 0

r2

We now inductively construct a morphism p : B̂ → k[[x1, . . . , xn]] as follows.
There is a morphism p2 : B→ R2 by taking the composition of the projection onto
B/m2 and then composing with the inverse of r2. We notice now that, if i ≥ 2, the
Ri’s are Artinian k-algebras (they are Noetherian and of dimension 0), so using
the formal smoothness property of B, we lift p2 inductively to compatible maps
pi : B→ Ri

k Ri+1

B Ri

pi+1

pi
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In this way, we assemble the map p, and we now consider the composition

k[[x1, . . . , xn]]→ B̂→ k[[x1, . . . , xn]]

This composition, which we call ψ, has the property that, by construction of the
maps, the induced endomorphism R2 → R2 is an isomorphism. Then, applying
lemma 3.3.3, we find that ψ is an isomorphism, so r must be injective. We already
knew that r was surjective, so we conclude that it is an isomorphism. So B̂ is
regular, and hence B is, too, by proposition 3.3.2.

Recall the notation we introduced in chapter 2.3: given a scheme X, if A ∈ A,
we let X(A)x denote the set of morphisms Spec A → X having image x. This
allows us to restate theorem 3.3.4 in this form:

Theorem 3.3.4. Let X be an algebraic scheme and x ∈ X(k). Then X is regular at x if
and only if X(−)x is unobstructed.

This reformulation of theorem 3.3.4 will be more useful to us, because of the
theory we developed for the obstructions of embedded deformations. We now use
it to show some examples, beginning with a definition.

Definition 3.3.5. A subscheme X ⊂ Pn has length l if the Hilbert polynomial of X is the
constant polynomial l.

Since the Hilbert polynomial of a closed subscheme X ⊂ Pn has degree equal
to the dimension of X, a subscheme of length l must be zero dimensional, and a
0-dimensional subscheme of Pn of finite length is a finite union of points

Z = qz SpecOZ,z
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where OZ,z is an Artinian k-algebra of length nz, such that ∑z nz = l. The Hilbert
schemes Hilbk

Pn are also called the Hilbert schemes of l-points.

Proposition 3.3.6. The Hilbert scheme of subschemes of length k in P2 is smooth.

Proof. X is zero dimensional, and since the depth of a local ring cannot be greater
than its dimension, all of its local rings are Cohen-Macaulay. So, by theorem 3.2.6,
X is locally unobstructed in P2. Moreover, since X is zero dimensional, H1(X,F )
vanishes for every coherent sheaf on X, and so HP2

X is unobstructed by theo-
rem 3.2.2. Hence, applying theorem 3.3.4 we conclude that the Hilbert scheme
is smooth.

Example 3.3.1. Using the Hilbert schemes of points we can show that the local
unobstructedness hypothesis in theorem 3.2.2 is necessary. We give here an exam-
ple a Cohen-Macaulay subscheme of codimension 3 in P3 that is obstructed. Let
X = Spec k[x, y, z]/m2, where m = (x, y, z) and consider X as a subscheme of P3.
X is a subscheme of length 4. It can be shown that the point corresponding to X
lies in an irreducible component of Hilb4

P3 of dimension 12, see [Fan+05, Section
7.2]. However, a direct computation shows that h0(NX/Y) = 18, so X does not
correspond to a smooth point of Hilb4

P3 , even though H1(NX/Y) = 0.

We can also finally prove a result promised in 1.3.5, that is the smoothness of
the Hilbert scheme of plane curves.

Proposition 3.3.7. The Hilbert scheme of plane curves Hilbcurves
P2 is smooth.

Proof. Let C be a plane curve. Since plane curves are hypersurfaces in P2, they
are global complete intersections and hence lci, so by theorem 3.2.8 locally unob-
structed. Moreover, we have that IC ' O(−deg C). Hence, the normal sheaf of C
is the OC-dual of i∗O(−deg C), and we obtain NC/P2 = OC(deg C).
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Moreover, there is a short exact sequence of sheaves

0 O O(deg C) i∗OC(deg C) 0

obtained by tensoring the exact sequence defining i∗OC by O(deg C). Taking the
associated long exact sequence in cohomology, we find that

H1(P2, i∗OC(deg C)) = H1(C,OC(deg C)) = 0

So there are no obstructions to liftings, and we conclude by using theorem 3.3.4.

In all these examples, we used that a subscheme is unobstructed if H1(X,NX/Y)

is trivial. To end the chapter, we show that it not necessary that this cohomology
group is zero for X to be unobstructed in Y. Indeed, if X is rigid in Y (see definition
1.2.8) then clearly it is unobstructed, and we have the following simple criterion
for rigidity.

Proposition 3.3.8. Assume that H0(X,NX/Y) = 0. Then X is rigid in Y.

Proof. We saw in theorem 3.1.2 that, under the Schlessinger conidtions, the tangent
space of an Artin ring functor acts in a free and transitive way on the liftings. We
use this to prove by induction that HY

X(A) is a singleton for every Artin ring A.
We do induction on the length n of the ring.
We start with n = 2. The only k-algebra that is Artinian and of length 2 is k[ε], and
so the base step is true by the assumption on the tangent space.
For the (n+ 1)-step, quotient A to get an algebra Ã of length n. Notice that A→ Ã
is a small extension. By assumption, there is a single embedded deformation over
Ã, the trivial one. Any embedded deformation over A is a lifting of this trivial
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deformation, so H0(X,NX/Y) acts on HY
X(A) in a free and transitive way. But the

tangent space is trivial, so we conclude that HY
X(A) can have only one element.

Example 3.3.2. Let C be a smooth projective curve of genus g ≥ 2. By separated-
ness, the diagonal morphism ∆ : C → C × C = S is a closed immersion, and we
identify its image with C. If I is the ideal sheaf defining this immersion, then the
normal sheaf NC/S is the dual of I/I2. The latter is by definition the contanget
sheaf ΩC/k, so we find that NC/S is the tanget sheaf TC of C. Serre duality and
Riemann-Roch imply that h1(C, TC) = 3g − 3 6= 0. However, C is unobstructed
in S. Indeed, using again Riemann-Roch we find that H0(C, TC) = 0, so by the
proposition above, C is rigid in S and hence unobstructed.
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Chapter 4

Formal deformations and
Schlessinger’s theorem

This chapter is less concerned with the study of deformations of embedded de-
formations, and focuses on the topic of formal deformations. When we defined
infinitesimal deformations, we stated that they were the building blocks of formal
deformations, and in this chapter we see how that is. We explain here why formal
deformations are relevant.
Suppose that we are interested in the deformation of a projective variety X over
some curve, for example the affine line. Some such examples are shown in section
1.2. We could, however, not have a deformation overA1 to start with, but we may
be able to construct iteratively deformations Xn over Spec(k[x]/(xn)) which are
compatible, i.e. the sequence of infinitesimal deformations is coherent. This would
correspond, in the language of complex geometry, to taking the Taylor expansion
of order n of the equations defining X, and taking the limit we would get a formal
series. We could then consider the region (supposing it exists) where said series
converge and obtain a deformation of X over some open subset of C.
In the language of algebra, taking the limit means considering the deformations
{Xn} as a formal object, i.e. as an element of an inverse limit of a tower of sets.
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One geometric way of describing the formal deformation so obtained is as a for-
mal scheme over the formal spectrum of k[[x]]. The problem of "convergence"
(called, in this context, algebraizability) is however more subtle. Indeed, already in
the complex-algebraic sense, we would need to ask that the series converges to an
algebraic function, a very hard condition. Moreover, if in the complex-algebraic
sense we could see the formal deformation as a deformation over C[[x]], in the
algebro-geometric problem this is not necessarily true. A overview of this phe-
nomena can be found in [Ser06, Section 2.5].
In this chapter we introduce the notion of formal deformation, and then proceed
to define miniversal and universal deformations, which allow us to end the chap-
ter with the statement of the important Schlessinger theorem.

4.1 Formal elements

Let Λ a complete Noetherian local ring with residue field k.

Definition 4.1.1. The category ÂΛ is the category having local complete Λ-algebras with
residue field k as objects and local morphisms of Λ-algebras as morphisms.

In the following, if R ∈ ÂΛ, we will denote the maximal ideal of R by mR.
Given a functor of Artin rings F : AΛ → Set, we can upgrade it to a functor F̂ :
ÂΛ → Set in the following way. Given R ∈ ÂΛ, consider the tower of projections

· · · → R/mn
R → R/mn−1

R → . . .

Then let F̂(R) be the inverse limit of the system

· · · → F(R/mn
R)→ F(R/mn−1

R )→ . . .
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where the maps are the ones induced by F.
Given a morphism f : R → S in ÂΛ, there are induced morphisms fn : R/mn

R →
S/mn

S, which in turn yield yield compatible morphisms F( fn) once we apply F.
Taking the direct limit then gives a morphism F̂( f ) : F̂(R)→ F̂(S), and properties
of limits imply the functoriality of our construction.

Remark 4.1.1. Strictly speaking, the functoriality of F̂ is not guaranteed, since the
limit of a tower of sets is not unique, but only unique up to a unique isomorphism,
so then F̂ in truth would be a pseudofunctor, see https://ncatlab.org/nlab/show/pseudofunctor.
However, we shall always use a unique "canonical" model for the limit of a tower,
that is the set of coherent sequences, and hence treat F̂ as a true functor.

Remark 4.1.2. Since the maximal ideal of an Artinian ring is nilpotent, it follows
that if A ∈ AΛ then F̂(A) = F(A), and the same goes for morphisms. So, F̂
restricted to the subcategory AΛ is the functor F we started with.

Remark 4.1.3. From the properties of complete rings, it is readily checked that hR/Λ

satisfies all the Schlessinger conditions. In particular, it is then well defined the
tangent space to hR/Λ.

Example 4.1.1. If R ∈ ÂΛ, we defined in example 1.1.1 what it is the functor prorep-
resented by R: it is HomΛ(R,−), which we will from now on denote by hR/Λ.
By basic properties of completions, it follows that ĥR/Λ is simply HomΛ(R,−).
In particular, if A is Artinian and n is such that mn

A = 0, then h(R/mn)/Λ(A) →
h(R/mn+1)/Λ(A) is a bijection.

Definition 4.1.2. An element û ∈ F̂(R) is called a formal element for R.

Recall that, for an object X of some category C and a functor F : C → Set,
the Yoneda lemma yields a bijection between F(X) and natural transformations

https://ncatlab.org/nlab/show/pseudofunctor
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HomC(X,−) → F. In our case, we cannot apply the Yoneda lemma to prorepre-
sentable functors since they are not necessarily represented by objects of AΛ. We
can, however, prove the following formal version of the lemma.

Lemma 4.1.3 (Formal Yoneda lemma). Given R ∈ ÂΛ, there is a bijection between
natural transformations hR/Λ → F and elements of F̂(R).

For notation’s sake, in the following proof and only there, we write hR instead
of hR/Λ.

Proof. Let û ∈ F̂(R). Then û is the datum of a coherent sequence (un)n with un ∈
F(R/mn+1). Let kn be the natural transformation kn : hR/mn → hR/mn+1 induced
by the projection.
By the Yoneda lemma, each un defines a natural transformation φn : hR/mn+1 → F.
The coherence of the sequence implies that the following diagram commutes

hR/mn hR/mn+1

F
φn−1

kn

φn

By example 4.1.1, kn
A is a bijection for a sufficiently large n, so there is an isomor-

phism gA : hR/mn(A) → hR(A). Then, we define φA : hR(A) → F(A) as the
composition

hR(A) F(A)

hR/mn(A)

g−1
A

φA

φn
A

To check that it gives a natural transformation φ : hR → F, given a morphism
f : A → B in AΛ, by taking n sufficiently large it immediately follows from
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naturality of the φn’s.
Conversely, given a natural tranformation φ : hR → F, let un ∈ F(R/mn+1) the
image of the canonical projection R → R/mn+1 under φR/mn+1 . Naturality of φ

implies that the sequence is coherent, so it defines an element of F̂(R).
Using the standard Yoneda lemma, once can now show that the constructions
made above are indeed inverse to each other.

Given R as above and û ∈ F̂(R), we say that (R, û) is a formal couple for F. In
view of remark 4.1.3, we call the differential of the natural transformation idnuced
by û the characteristic map of û, and we denote it by dû : thR/Λ

→ tF.

Definition 4.1.4. A formal couple (R, û) is called universal if the induced morphism
hR/Λ → F is an isomorphism of functors.

It is clear from the definition that, if (R, û) is a universal formal couple, then F
is prorepresented by R.

Consider now two functors of Artin rings F and G, and let f : F → G be a
morphism between them. Let φ : A→ B a morphism in AΛ Then, the diagram

F(A) G(A)

F(B) G(B)

F(φ)

fA

G(φ)

fB

yields a natural map
β : F(A)→ F(B)×G(B) G(A)

Definition 4.1.5. A morphism f as above is called smooth if the map β is a surjection
whenever φ : A → B is a small extension. If G is the singleton functor and f is smooth,
F is said to be a smooth functor.
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Here, by singleton functor, we mean a functor G such that G(A) = ∗ for every
object A. Notice that, by remark 1.1.2, if a morphism f : F → G is smooth, then β

is also surjective whenever A→ B is surjective.
A functor F is smooth if and only if the map F(A) → F(B) is surjective when-

ever A→ B is small, so F is smooth if and only if it is unobstructed. This ties well
with the interpretation of unobstructedness we found in theorem 3.3.4. Moreso,
the term smooth for a morphism of functors has its origin in the following por-
perty of morphism of rings.

Definition 4.1.6. Consider a ring morphism φ : R → S. It is called a formally smooth
morphism if, for every R−algebra B, square-zero ideal I ⊂ B and every solid diagram

S B/I

R B

φ π

where π is the projection, there is a dashed arrow making the diagram commute.

When translated in the language of schemes, the notion of formal smooth-
ness recovers the usual one. Indeed, if we ask that f : X → Y is locally of
finite presentation and has the infinitesimal lifting property for every first or-
der thickening of affine Y-schemes, then f is smooth. A proof can be found in
https://stacks.math.columbia.edu/tag/02H6.

In the case when R is Noetherian, the situation is simpler. Indeed, the following
fact, which we also do not prove, holds:

Proposition 4.1.7. If R is Noetherian, a morphism of finite presentation R → S is for-
mally smooth if the infinitesimal lifting property holds for small extensions of Artinian
rings.

https://stacks.math.columbia.edu/tag/02H6
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A reference for the proof is https://stacks.math.columbia.edu/tag/02HX. Also,
notice that we proved this in theorem 3.3.4 in the case when X → Spec k is struc-
ture morphism.

If f : R → S is a morphism of Noetherian local Λ-algebras with residue field
k, there is an induced morphism of Artin rings h f : hS/Λ → hR/Λ (we previously
defined the fucntors hR/Λ only for complete local Noetherian rings, but their def-
inition can be extended in an obvious way for Noetherian algebras with residue
field k).

Proposition 4.1.8. If R is Noetherian, a morphism of finite presentation R → S is for-
mally smooth if and only if h f is smooth.

Proof. This is just playing around with the definitons. h f is smooth if and only if,
givan any small extension A→ B, the map

hS/Λ(A) hR/Λ(A)×hR/Λ(B) hS/Λ(B)

is surjective. But this happens iff and only if f has the infinitesimal lifting property.

4.2 Formal deformations

In this section R denotes an object of ∈ ÂΛ and A an object of AΛ. All morphisms
will be in the appropriate category.

Definition 4.2.1. A formal deformation of X over R is an element X̄ of D̂efX(R).

We spell out in detail the meaning of definition 4.2.1. A formal deformation X̄
is the datum, for every n, of a deformation Xn of X over R/mn+1, such that the

https://stacks.math.columbia.edu/tag/02HX
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pullback of Xn along Spec(R/mn)→ Spec(R/mn+1) is isomorphic to Xn−1.
Also, given a morphism f : R→ A, X̄ induces a deformation X on A. We can use
the explicit construction in the proof of the Formal Yoneda Lemma to determine
X . Indeed, let n such that mn+1

A = 0. Then f factors as R/mn+1 → A. Then X is
the pullback along this morphism of Xn.

We introduced in the previous section the notion of formal couple. We say
then that a formal deformation X̄ over R is universal if it forms a universal formal
couple. Univeral formal couple, however, do not usually exist. They do for the
Hilbert local functor HY

X if Y is projective, since we saw in remark 2.3.1 that HY
X is

then prorepresentable, but they are not guaranteed to exist for the functors DefX

and Def′X. So we introduce two weaker notions of universality.

Definition 4.2.2. A formal deformation X̄ over R is versal if the induced morphism
hR/Λ → DefX is smooth. It is miniversal if it is versal and moreover, the differential dX̄
is an isomorphism.

The definition of versal and miniversal element for a functor of Artin rings is
analogous.

Again, we explicitly spell out the property of versality for a formal couple
(R, X̄ ). Given a small extension A′ → A and a morphism f : R → A, we have
induced a deformation X of X over A. Let X ′ a deformation over A′ that lifts X .
Then, the formal couple is smooth if there is a morphism g : R→ A′ such that

R A′

A
f

g

commutes and g induces X ′ on A′.
With all the work done so far, we can finally state Schlessinger’s theorem:
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Theorem 4.2.3. [Sch68, Thm. 2.11] Suppose F is a functor of Artin rings satisfying
condition H0). Then F has a miniversal element if and only it satisfies conditions H1),
H2) and H4). If F has a miniversal element, it then has a universal element if and only if
it satisfies condition H3).

The Schlessinger’s theorem is extremely useful in proving the existence of
miniversal deformations for various deformation problems. For example, one can
prove a result similar to theorem 2.2.3 for the functor DefX, except that this func-
tor does not usually satisfy condition H3). So, if X is such that the tangent space
to DefX is finite dimensional (for example if X has isolated singularities), then
Schlessinger’s theoerm guarantees the existence of a miniversal deformation. It
is, however, harder to verify if a functor satisfies condition H3), but with the work
done in chapter 3 we find the following equivalent criterion.

Proposition 4.2.4. If F has a miniversal element, then F has a universal element if and
only if for every small extension φ : A′ → A the action of tF is free and transitive on the
nonempty fibers of F(φ).

Proof. Combine theorem 4.2.3 and 3.1.5.

As a corollary of Schlessinger’s theorem, we can give an alternate proof of
the prorepresentability of HY

X when Y is projective, see remark 2.3.1. Indeed, we
saw in corollary 2.2.7 that, if Y is projective, then HY

X satisfies all the Schlessinger
conditions. This then, by Schlessinger’s result, implied prorepresentability.
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